Maths 9th Class

Maths CLASS 9th , Ex 2.3 ,

Q-1 Find the remainder when : x[cube]+3x[square]+3x+1   is divided by :

[1]  x+1
[2]  x-1/2
[3]  x

Solution :
[1]  by remainder theorem
       x+1=0
       x=0-1
       x= -1
     = x[cube]+3x [square]+3x+1
     = [-1]cube +3[-1]square+3[-1]+1
     = -1+3-3+1
     =4-4
     =0     Ans.

[2] by remainder theorem
      x-1/2=0
      x=0+1/2
      x=1/2
    =x[cube] +3x[square]+3x+1                      [square]= power of x   
 
    =1/2[cube]+3[1/2]square +3[1/2] +1        [ ] = multiply                                         
    =1/8+3[1/4]+3/2+1
 
   =  1/8+3/4+3/2+1/1
    Taking LCM of denominators
    LCM of 8,4,2,1 =8
 
  now, 1[1] +3[2]+3[4]+1[8] / 8                     / = upon

=1+6+12+8 / 8
=27/8      Ans.


HW. part 3 of this  question

Video lecture provided below ||




stay tuned to this blog ....
_____________________________________________________________________________
If there is any problem or doubt , you can comment below and give your views for this method of online teaching .


                                                                                                                    ---   Manmohan Sharma
































Comments

Popular Posts